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ABSTRACT

The objective of this research prdgram was to explore tapering of
interaction tubes and magnetic fields as techniques for enhancing the
performance of high power microwave gyrotron-backward-wave-
oscillators (gyro-BWOs). Experiments were performed on the Michigan
Electron Long-Beam Accelerator, (MELBA), which operated with |
parameters: voltage=0.7-0.9 MV, diode current = 1-10 KA, injected current
= 1-4 kA, and pulselengths of 0.5-1 microsecond. Microwave emission
frequency was in the range from 4.5-6 GHz. Experiments on the
fundamental cyclotron wave showed peak microwave tube power up to
40-55 MW over shortened pulselengths (<100 ns). Longer pulse microwave
emission was obtained at lower powers (multi-MW). The second harmonic
gyro-BWO emission spectrum was also measured at ~\MW power levels.
The microwave spectral width was < 200 MHz (<3.7%) for uniform B field
with uniform or tapered tubes. Widened spectra of 200-400 MHz (<7.4%)
were measured for tapered magnetic fields with uniform or tapered tubes.

Modeling was performed with the MAGIC code to guide the

experiments. Results showed qualitative agreement between TE4{4 mode
experiments and TEg4 MAGIC Code simulations, regarding microwave

power versus tapering direction and scaling.

Research collaborations between UM and the Phillips Lab were
extensive. During August of 1993, two scientists from Phillips Lab
traveled to Michigan to perform experiments on MELBA which measured
the microwave spectrum of fundamental cyclotron mode radiation emitted
from tapered-versus- uniform-tube gyro-BWOs; these results were
published. T.A. Spencer also served as a member of the doctoral committee

of Mark T. Walter.




1.0 Introduction .

| The Air Force requires high power microwave sources which span the
frequency range from 1-300 GHz. One type of tunable microwave source
which has promise over a large part of the frequency spectrum is the
gyrotron class of devices. In particular, the gyrotron-backward-wave-
oscillator has promise because of the following features:
1) Operation near cutoff gives insensitivity to e-beam velocity spread,

(an advantage for explosive emission, cold cathodes),

2) Frequency-tunable by magnetic field, beam voltage or alpha (V _L/V“),

and
3) Smooth wall reduces microwave breakdown.

The research project described here outlines the major findings of a
41-month series of experiments and code simulations to investigate
whether the high power and long-pulse capabilities of the gyro-BWO could
be extended by tapering of magnetic fields and radius in tubular

structures.

2.0 Progress on Research During AFOSR Grant
2.1 Experimental Configuration

The experimental setup for the tapered-magnetic field gyro-BWO is
presented in Figure 1. The electron beam is generated from a velvet
button, explosive-emission cathode affixed to the end of a glyptal-coated,
hemispherical-end cathode stalk; this cathode has been demonstrated to
produce very low plasma closure velocities and voltage droop. The
magnetic field system includes four separate sets of coils:
1) Large, pancake solenoids which produce about 1 kG magnetic field in
the diode region (driven by a capacitor bank at 1.8 kV),
2) Solenoidal magnetic field coils, wound directly around the vacuum tube
(driven by a double polarity, Marx circuit, electrolytic capacitor bank),
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3) Correetion coils to cancel the spatial decay of the diode coils
(coﬁnected in series with the diode coils),

4) Tapering trim-coils (of different winding-pitch), which can be
connected for positive or negative magnetic tapering.

After the e-beam leaves the interaction region, it is dumped to the
chamber walls by two large permanent magnets.

The microwave extraction is accomplished by a bevel-cut S-band
waveguide at the upstream (backward-wave) end of the tube. Microwave
output power is reduced by directional couplers and either split into
G-band and H-band channels or sent to the Faraday cage on coaxial cables
for frequency filter measurements. '

The conventions on tube tapering and magnetic tapering are shown in
Figure 2. Tapered tubes were made of thin copper sheet, which enabled
fast penetration of pulsed magnetic fields. The median radius of the tubes
was 1.9 cm.

The desired gyro-BWO dispersion relation is depicted in Figure 3. The

-fundamental gyrotron-backward-wave interaction for the desired TE 4

mode is at a frequency of about 4.8 GHz for this magnetic field of 4.5 kG.

2.2 Experimental Results

This section summarizes the results of the gyro-BWO experiments
over the entire 3 year, 5 month program. Typical MELBA waveforms are
presented in Figure 4. The electron beam voltage overshoots to about 900
KV, followed by a slight undershoot of ~750 kV; later on in the pulse the
voltage becomes very flat. The e-beam current is also quite flat for this
cathode. Microwave emission was typically long-pulse during the
undershoot, as shown in the figure; highest power spikes (<100 ns) were
typically measured on the initial overshoot.

A summary of peak power for individual shots, for the case of a
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uniform magnetic field and uniform interaction tube-is given in Figure 5.

The,; highest tube power (~33 MW) from the peak extracted power shot (6.6
MW) is obtained by assuming the peak, -7 dB coupling between the tube and
the extraction waveguide. A broad power peak can be seen at about 4,600
Gauss, however, the scatter in the data makes it difficult to compare

these data to the MAGIC code results. Therefore, the data was smoothed
by averaging over 100 Gauss bins, as shown by the smooth line drawn over
the data.

Negative tapering of the tube radius, with uniform B field, was
predicted by MAGIC code to yield an improvement in gyro-BWO microwave
power. Comparison of tapered tube data with MAGIC simulations results
are given in Fig. 6a and 6b; MAGIC code power is normalized to
experimental power at zero taper. It can be seen that, the general shape
and amplitudes of the curves are similar, even though the horizontal scale

appears slightly "out-of-phase" versus taper %. This may be a

consequence of the fact that the experiment operated in the TE44 mode,

whereas the code was run for the azimuthally symmetric TEg{ mode. The

optimal, experimental power and energy for this case is for the 10%
downtapered tube with a uniform magnetic field.

Gyro-BWO experimental emission data for the tapered magnetic field
with a uniform tube, are shown in Figure 7, for comparison with MAGIC
code simulations. Agreement between code and experiments was initially
poor; a closer analysis revealed that the negative tapered B field data
probably contained some regions of positive taper, as shown in Figure 8.
When the region of positive taper was eliminated, the measured
microwave power was closer to the trend predicted by MAGIC; this is
shown as the vertical dotted lines in the figure. Thus, the experimental
data showed the same trends as MAGIC code simulations for both tapered

tubes/uniform B as well as tapered B/uniform tubes.




2.3 MAGIC Code Simulations
Magic Code simulations were used to guide the gyrotron-

backward-wave-oscillator experiments. As in the past, these simulations

were run for a scaled TEg1 mode (instead of the experimental TE4 4 mode)

to indicate the effects of tapered magnetic fields and tapered tubes. The
particle trajectory plot, showing the simulation geometry is presented in
Figure 9; as seen in the figure, the gyro-emission e-beam is deflected to
the tube wall after the interaction region. (More details on the modeling
techniques were presented by Mark Walter in the MAGIC User Group
Meeting in Madison, Wisconsin at ICOPS; also see proceedings compiled by
Mission Research Corp. and a paper for submission to the Special Issue on
High Power Microwaves of the IEEE Transactions on Plasma Science). The
time history of Etheta is shown in Figure 10, indicating that rapid growth
and saturation occurs. The microwave frequency of the FFT in Figure 11
shows that the MAGIC code's radiation originates from the fundamental
gyro-BWO.

A summary of the MAGIC Code modeling of the gyro-BWO for tapered
magnetic field and interaction tube radii is presented in Figure 12. This
plot clearly shows that a positive-tapered magnetic field (optimized at
7.5%) results in increased microwave power. The intuitive explanation for
positive-B-tapering providing enhanced power is that an increasing B field
allows the higher energy electrons (initially accelerated by the wave) to
fall back into resonance and emit their energy. One could argue that there
is more to be gained by recovering energy from the accelerated electrons
than by attempting to recover more energy from the lower energy
electrons which have already emitted. For the perfectly cold e-beam of

the computer model, the uniform tube radius has the highest power;




experimentally, we observed maximum power for negative-tapered-radii,
showing that radius tapering is advantageous for a real, hot, e-beam with

large alpha spread.
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